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Forward 

The specific aim of Identifying Key Actors in Heterogeneous Networks (W911NF-17-0009) was 
to advance and reconcile the formal representations of social relations and coalition formation 
from social network analysis (SNA) and game theory (GT) to improve accuracy for detecting 
significant or “powerful” actors within a total actor space when both resource and structural 
constraints must be taken into account. This project produced a new analytical capability forged 
by integrating the structural constraints that can be modeled by SNA with the assessment of 
actors contributing to collaborative coalitions modeled by cooperative game theory (CGT). Our 
premise was that many critical strategic and tactical situations of interest to the Department of 
Defense (DOD) present social situations that are outside the scope and violate the assumptions of 
these existing social science models. SNA by its very construction focuses on dyadic relations 
and standard SNA metrics are focused only on structure and do not take into account vertex 
attributes. And while there has been good work on inferring “roles” from network metrics, these 
studies do not treat such roles as resources that must coalesce in order to achieve a desired 
outcome. CGT models of coalition formation are based on two limiting assumptions: that actors 
who cooperate do so only to gain the best individual advantage and that all actors can transact 
with any other. Both of these assumptions are unreasonable in many operational settings. The 
situations we focused on for this effort entailed a network of actors with different skills seeking 
to form an alliance with complementary, though not necessarily directly connected, alters to 
achieve an advantageous outcome at the expense of others. The approach developed to address 
this scenario is intended as a demonstration of a new approach for synthesizing social network 
analysis and game theory. The ultimate goal of this research agenda is to generalize this approach 
to support more nuanced analyses of empirical data applicable to a broader range of real-world 
conditions. 

The project just completed produced a new metric that we refer to as the Beyond Dyads (BD) 
value, which accounts for both the structural constraints modeled by SNA and the assessment of 
actors in contributing to collaborative coalitions modeled by cooperative game theory (Shubik 
and Shapley 1972). The synthetic methodology amalgamated existing constructs from SNA and 
GT so that each would complement and overcome the limitations of the other. The new metric 
presents a major advance in conceptualizing the “actor space” to provide a sizable advantage for 
identifying and ranking significant actors within the total actor space when both resource and 
structural constraints must be taken into account, a highly probable situation in many operational 
contexts. Although the motivation for this project was to develop a better approach for 
identifying key actors in opposition to US interests, the models and methods developed will 
apply to a broad range of scenarios regarding the formation or dissolution of coalitions that 
impact US interests and policy objectives. 

The primary objective of this report is to describe the BD algorithm. In the next section we 
provide a theoretically motivated example that conveys the essence of our approach in a manner 



3 

that allows the reader to understand the problem we are addressing and the means we have 
conceived to solve it without requiring deep study of the mathematical model. We use this 
example as a reference as it provides an intuitive illustration of the limitations of GT and SNA 
taken singly, and the potential benefit of an integrated approach. This introduction is followed by 
a detailed description of how that BD metric is calculated. We then return to the illustrative 
example to describe how we implemented and evaluated this new metric.  
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Statement of the Problem Studied 

Theoretically Motivated Example  

To illustrate our approach consider the following very simple example.  In the network diagram 
given in Figure 1, edges denote structural connections among actors and shapes and colors 
denote certain roles or resources required to perform a collective goal. We imagine that actors are 
aware of each other and can act collectively only if they are directly connected to one another or 
if they act in concert with other actors that provide the necessary linkages. That is, we suppose  

 

that no coalition can form among actors unless a path exists within the coalition linking each 
member to every other. Additionally, we require that for a coalition to accomplish the goal, it 
must contain at least one actor possessing each of the three required resources (triangle, circle, 
and square). An intuitive inspection of Figure 1, leads most people to identify vertex C as the 
preeminently significant actor, but SNA and GT solutions move the focus to others, because 
structural and role constraints taken together require rethinking how power or significance is 
evaluated within the space of actors. Were we to focus only on the structural constraints of the 
network and use the most frequently used standard network metrics, significance appears to be 
broadly distributed throughout the network (see Table 1 below). Using a game theory solution, 
the Shapley value, to gauge the power of actors based only on attributes and without accounting 
for structural constraints, we identify the two triangular vertices as most significant because of 
their relative scarcity. (Note that for this example, we have used a characteristic function for each 
coalition equal to the number of disjoint triangle-circle-square (T-C-S) triples contained in the 
coalition. Since there are at least two of each shape, the grand coalition has value 2.) 

Our approach aims to identify key actors in networks of this type that are too large and complex 
for humans to develop an intuition without analytical tools. In actuality, the methods we will 

A

B

C

D

E

F

G

H

I

Figure 1. Actor space for the example, including structural ties and attributes 
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produce will operate on complex datasets that do not reveal an intuitively obvious solution, and 
will allow for nuanced analyses to distinguish among “imperfect” coalitions based upon their 
degree of deficiency with respect to roles or resources and structural proximity. The example 
provided above was intended merely to illustrate the limitations of using either GT or SNA 
methods in isolation. In the following section we describe our approach to creating a new metric 
that considers both structure and role. 
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Summary of the Most Important Results 

Methodology for computing Beyond Dyads values 

To emphasize that our context is an actor space with a distribution of attributes or roles over it 
where interaction among actors is constrained by a network topology, we will denote this actor 
network asG to emphasize that it is a graph as well as a set of actors. We are borrowing ideas 
from SNA and cooperative game theory CGT, though our assumptions are distinct from those 
made within either of those traditions. In particular, we assume that actors will cooperate toward 
a common goal irrespective of personal gain. This stands in stark contrast to the assumption in 
CGT that actors cooperate for maximal personal gain.  

A key influence from CGT on our approach is how actor valuations derive from coalition 
valuations. In CGT this is often accomplished through the computation of the Shapley value on 
the basis of some characteristic function, which is a real-valued set function defined on subsets, 
often called coalitions, of the actor space. In this formulation, an actor’s value is the 
accumulation of the value contributed to each coalition, which in turn is measured by assessing 
the difference in the characteristic function value of the coalition with and without the actor as a 
member. 

Our approach will be to build a set function that can be used similarly. This metric should 
incorporate both the number or, more generally, weight of attributes possessed by a subset of the 
actor space and a measure of its connectivity. 

Before delving into the construction of the set function, we must consider a central barrier to this 
type of approach. Functions such as the Shapley value are usually computed over the power set 

of the actor space. As the number of subsets of a set of  n  elements equals 2n , this number 
explodes quickly. Most methods for managing this exponential explosion reduce this space of 
subsets by replacing the entire power set with some intelligently or randomly selected number of 
subsets from it. We will adopt the former strategy, and use our knowledge of the attributes 
distributed over the actor space to selectively produce a set of subsets (more accurately, 
subgraphs) that will be the basis for our set valuations, and from those our vertex valuations. 

Problem context 

The problem domain we are studying is one in which we suppose that there is an ensemble 

{a
1
,a

2
,,a

N
} of N  attributes distributed across the actor space and that one actor possessing 

each attribute is required to form a coalition capable of accomplishing some goal. We also 
assume that these actors are vertices in a social network and that there may be actors in the space 
which possess none of these attributes, but which may provide key connections within the 
network. 
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For now, we assume that each actor may possess at most one of the special attributes. In the 
future, we may wish to modify this constraint to allow actors to possess several of the traits 
necessary to accomplishing the collective goal. We may also wish to generalize to the case where 

we require n
i
 actors possessing attribute a

i
, i  1,2,, N  to achieve the goal, and, within this 

latter context, to the case where N  may equal 1, that is, where there is no distinction among the 
attributes, but merely a constraint that a certain number of actors possessing the key attribute 
must cooperate to achieve the goal. 

Subgraph selection 

The first technical requirement of any method approaching the problem as we have is to cut 
down the sample space of actor subsets. At the outset of this project, we assumed that for this 
STIR phase, we would do no better than to sample subsets of the actor space randomly, and to 
base our metric upon such a random sample. However, upon a bit more reflection, it became 
clear that the requirement that coalitions of members possessing certain key attributes be formed 
to accomplish the desired could be leveraged to intelligently rather than randomly sample the 
subset space. The method we arrived at is detailed immediately below. 

We start the process of selecting subgraphs by forming tuples of actors representing distinct 
attributes. For this phase, we required tuples to be complete, that is, to contain one actor 
representing each of the N  attributes. We can consider relaxing this requirement in the future, 
thus expanding the set of sampled subsets to those containing some minimum number (or, more 
generally, weight) of attributes, and our algorithms are coded to accommodate such a change. We 

denote by {A
0
, A

1
,, A

N
} the partition of the elements of G  by attribute, where elements of A

i
 

possess attribute a
i
 and the subset A

0
 contains elements of G  possessing none of the required 

attributes. With this notation in place, we can formally define a tuple T  as an element of the 

Cartesian product set A
1
 A

2
 A

N
. Note that A

0
 is not part of this product set. Since we are 

concerned with connectivity as well as attributes, we create tuples only within connected 
components of G , not across them. 

Once the set of tuples is in hand, we create subgraphs in the following way. For each dyad of 
vertices in a tuple T , we calculate all minimal distance—by which we mean minimal length or, 
more generally, minimal edge weight—paths joining the elements of the dyad. Having obtained 
the set of paths for each dyad (note, this set may contain a unique minimal path or several such 
paths), we then take the Cartesian product of these path sets. We obtain a subgraph from each 
element of this product set of paths by taking the subgraph of G  induced by the set of vertices 
lying on the paths that comprise this element. Note that because minimal paths are not 
necessarily unique, a tuple can give rise to more than one subgraph. It is equally true that the 
same subgraph can be induced by different tuples. In the end, we include one copy of each 
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distinct subgraph created by this process in the collection of subgraphs that will form the basis 
for vertex valuations. 

We can illustrate the process with the following very simple example. Suppose we have a graph 
(or at least a piece of graph that contains all the relevant information we need for a given tuple of 
vertices) that looks like this 

 

Figure 2 

and that we wish to derive the subgraphs from the tuple (A, B, C). There are unique minimal 
paths between A and B and between B and C; however, between A and C there are two minimal 

paths: A—D—B—C and A—D—E—C. This gives rise to two distinct subgraphs:   S1
{A, B,C, D} 

and   S2
{A, B,C, D, E}. Note that all the edges that already exist between vertices are included 

in the generated subgraphs. In this example, the edge between B and D is preserved in the second 
subgraph, even though it does not figure in any of the minimal paths used to generate the 
subgraph. 

This little example highlights some key points and raises a few questions. First, the second path 
from A to C engenders a second subgraph only because this path is also minimal. If it were not 
because, for example, there was an additional vertex between E and C or because the weights of 

the edges on this path were greater than those on the path through B, then there would be no   S2
, 

even if there was some second path, perhaps not minimal, but also perhaps not too long or 
weighty either. We may wish to broaden our sample of subgraphs by including paths between 
dyads taken from the tuple that are either (a) minimal or (b) not minimal, but below some 
distance (length or weight) threshold, and which have intervening vertices that are disjoint from 
the tuple. 

How we actually value subgraphs and, therefore, vertices, is covered in the next section, but a 
couple of high-level points illustrated by our simple example can be made now. Note first that 
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the existence of the second path linking A to C means that some residual value remains in this 

dyad even after B is removed from subgraph S
2
. Without this second path there would be no S

2
, 

and A and C would never have the opportunity to realize this value. It should be noted that B also 
gets extra value from the existence of this second path between A and C as it receives much, but 

not all, of the value of S
2
, which is in addition to the value it receives from S

1
. 

Next, let’s focus on S
1
. When we delete B from this subgraph, the resulting isolated key vertices 

yield no value because they lack connection. The value thus gained by B equals the total value of 

S
1
. But, when we delete A, C, or D from S

1
, the value of the remaining dyad containing B, while 

not zero, is diminished. Therefore, some fraction of S
1
’s value is granted to A, C and D. It should 

be clear that the sum of these four vertex values deriving from subgraph S
1
 exceeds the value of 

S
1
. This is not, in itself, problematic for our purposes of determining relative valuations among 

vertices, but it is in contrast to the behavior of valuations like the Shapley value. 

Subgraph and vertex valuation 

The top-level idea here is that we will use tuples of vertices possessing distinct key attributes to 
value the graphs within which they lie. For example, if red, green and blue are the three required 
attributes, for a given graph we form all (red, green, blue) triples (where, as before, tuples are 
created within not across connected components), assign a value to each triple as a function of 
attribute weight and minimal path distances between dyads, and take the maximum of these tuple 
values as the value for the graph itself. 

The details of how these values are computed follows, but before moving to that let’s take note 
of a detail glossed over in the brief top-level description. A choice of what constitutes a valuable 
tuple of vertices must be made. The implication made above is that we are only interested in 
complete tuples, that is, tuples containing a representative of each attribute class. At the moment, 
our default method is to select subgraphs for the sample that are generated only by complete 
tuples. We may wish to modify this to include subgraphs generated by incomplete tuples of 
attribute representatives if they reach some attribute threshold. This threshold can be expressed 
in terms of the number of attributes or the fraction of total attribute weight represented or both. 
Our algorithms are written to accept either or both of these types of thresholds. 

We require a set of weights {w
1
,w

2
,,w

N
} on our set of N  attributes {a

1
,a

2
,,a

N
} such that 

w
i
 (0,1] for all i  and 

i
w

i
 1. Within these immediate constraints, our method is indifferent 

to how these weights are found. For the present, we will assign weights based upon the 
frequency of attributes in the population of actors. 
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Suppose that there exist n
i
 members of the actor space possessing attribute a

i
 for i  1,2,, N . 

Since scarcity should imply value, we assign weights to each attribute as 

w
i


1
n

i

j1

n


1
n

j

, i  1,2,, N . 

In the following, it will be necessary to associate these weights to vertices possessing one of the 

attributes. We denote by w
a
(x) the value of the attribute possessed by actor  x ; that is, 

w
a
(x)  w

i
 if  x  possesses attribute a

i
. If  x  possesses none of the key attributes, we set 

w
a
(x)  0. Since we will be interested in connections between actors possessing the important 

attributes, this zero value does not factor into our calculations, but is included to define a 
function on the complete actor space. This attribute weight and the path distance between dyads 
will be the basis of our tuple valuations. 

To value a graph we collect all tuples and value each in the following way. For each dyad (x, y) 

in the tuple, we denote by d(x, y)  the minimal path distance between  x  and y , where distance 

is the minimal path length or, more generally, the minimal sum of path edge weights within the 
subgraph. We then compute a dyad value v(x, y) as 

 v(x, y) 
w

a
(x) w

a
( y)

d(x, y)
,  

where   is a tunable parameter in the (0,1] interval. Our starting value for   is 
 

1

3
 (cube root) 

and we expect that values should lie in the 
1

4
,
1

2









 interval (4th root to square root). We can 

consider   a path-distance penalty parameter, with larger values exacting a larger penalty on the 
dyad value for the minimal path distance between the vertices. 

We will aggregate these dyad values over the tuple T  by summing, normalizing and scaling. 
Summing is rather straightforward. To normalize, note that any dyad value achieves its 
maximum when there is a distance 1 path between the vertices (this is clearly independent of the 

choice of   since 1  for any  ). In this case, v(x, y)  w
a
(x) w

a
( y) . If this maximal situation 

exists for all dyads of the tuple, then the sum of all dyad values is  
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
(x,y)

v(x, y)
(x,y)

wa(x)wa(y) , 

 where the sum is taken over all dyads of T . This last sum is equal to N 1 
xT

w
a
(x) , that 

is, the sum of the attribute values over the elements of T  multiplied by the length of T  minus 1. 
To see this, simply note that each x T  is paired once with every other, so that it is in exactly 

N 1 dyads. Thus w
a
(x) appears in the original sum exactly N 1 times. Putting this all 

together, we can normalize the sum of the dyad values for a tuple T  by dividing by this 
maximum possible value, that is, 

 
(x,y) v(x,y)

N1 xT wa(x)
.  

Note that this value lies in the (0,1] interval; however, it achieves the maximum value of 1 

whenever each dyad in T  is connected by a path with distance 1. But this is true whether T  
contains a representative of every attribute class or just some of them. For this reason, our last 
step in valuing T  is to scale the term above by the total attribute weight represented by T . If T  
contains a representative of every attribute class, this value will be 1. Otherwise, this value will 
lie in (0,1) . With a slight abuse of notation we will denote this final value for T  as v(T )  and we 

get a nice simple expression: 

 
(x,y) v(x,y)

N1 xT wa(x)
 wa (x) 

( x ,y ) v(x, y)

N 1 xT
 .  

So, in words, our tuple of length N  has a value equal to the sum of all dyad values divided by 
N 1. The dyad values are the sum of the attribute values represented by the vertices of the 
dyad, diminished by a divisor that is a function of the graph distance between the vertices. 

Note that v(T )  equals 
v(x, y)

2
, where we are denoting by v(x, y) the average dyad value. This 

observation allows us to think of v(T )  as the sum we would obtain over all elements of T  were 

we to distribute to each of these vertices one-half of the average dyad value. We take the 
maximum value of v(T )  over all tuples T  formed from the graph and assign that value to the 

graph. Vertices are valued by removing them from each of the sample subgraphs in which they 
lie and accumulating the deltas of the set values that result.  
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As part of this effort we also investigated avenues for adjusting these values to give a scoring 
advantage to vertices that reduce a high-value set to a moderate-value set over those that would 
yield a similar difference but between a moderate-value set and a low-value set. For example, in 
terms of non-transformed values, a vertex that reduces the value of a high-value set from 0.8 to 
0.6 gains the same yield (0.2) that a vertex that reduces the value of a moderate-value set from 
0.5 to 0.3. The effect of distorting the final value nonlinearly can be seen in the Figure 3, where 

the nonlinear function is given by 
  
f (x) 

1 e 

1 e x
. In this plot,    5 and    3.5. If we 

transform these values by the function shown above, the first vertex would gain 

  f (0.8) f (0.6)  0.28, and the second would gain   f (0.5) f (0.3)  0.20 .  

 

Generation of BD Value 

The BD algorithm was programmed in Python to accept input as raw comma-delimited data or  
in the graphML format. Data represents an edge list and associated vertex attribute file. For any 
graph alternative, “colorings” can be saved in a graphML file as attributes. Gray is the default 
color we have used to represent vertices with no intrinsic value to the coalition.  

Instructions for computing BD values are detailed in the Jupyter Notebook which will be 
included as part of the software package we are preparing. The algorithm accommodates the 
simultaneous processing of multiple (Freeman 1978; Bonacich, 1987) on the same graph. The 
output currently includes centrality metrics and BD scores for all specified colorings. 

Table 1 is a summary of the BD values for each vertex in the network represented in Figure 1. 
For this illustration we also included values for the GT Shapley Value and Core (Shapley & 
Shubik 1971), and the SNA Key Player Solution (Borgatti 2006). Note that GT solutions identify 
vertices A and B as the most advantaged, while the game theory solutions identify vertex E as the 

Figure 3  
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most powerful. The BD solution successfully identified vertex C as the most powerful or 
advantaged with regard to access to resources given network structures.  

 

Metrics Evaluation 

To evaluate the metric required that we compare it to existing approaches under a range of 
conditions. The first step was to create an assortment of colored graphs and access how well the 
BD algorithm did at identifying advantaged positions compared to the conventional metrics. The 
inherent challenge to evaluating the value and accuracy of this new metric is that, with the 
exception of very simple examples like the network in Figure 1, the “correct” answer is 
unknowable. If we could ascertain the answer in any other way, this algorithm would not be 
needed. 

We met this challenge by constructing families of colored graphs with an array of structural 
properties that should theoretically generate rankings approximating either known network 
metric values or game theory values. We then assessed whether the BD metric results seemed 
reasonable given these general expectations. For this project, our objective was to confirm our 
intuition that the metric was performing in a manner that weighted both structure and role. This 
was neither comprehensive nor conclusive. A true test the validity and usefulness of the 
algorithm will require applying the logic presented here to a broader range of simulated 
networks, and complementing that with applying the algorithm to analyze empirical datasets. At 
this stage in the development of the algorithm, our objective was to apply the metric to a 
theoretically informative selection of example networks to deepen our understanding of how the 
algorithm was performing. We anticipate that the logic of this approach will ultimately be the 

Table 1 
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basis of an approach to measure metric validity. Currently, the standard we hoped to meet was to 
demonstrate that the metric output was reasonable given the structural properties of the network.  

We considered three of types of 21-vertex graphs: random (Erdos & Renyi 1960), preferential 
attachment (Barabasi and Albert 1999) and small world (Watts & Strogatz 1998) each of varying 
attribute densities ranging from equal distribution to highly skewed distribution of the three 
colors needed to complete a coalition (red, blue and green) and a fourth color (gray) that 
indicated vertices not possessing any key attribute. Game theoretical solutions produce identical 
rankings for each coloring scheme regardless of network structure. The network solutions each 
provide identical rankings for each network regardless of colorings. Therefore, in the absence of 
structure, the BD value should match game theoretic predictions, and as structure becomes more 
salient, the BD value should diverge and become more similar to social network metric rankings. 
For instance, a completely connected network, or, to a lesser extent, a random network, should 
approximate the values generated by the Shapley value. In contrast, the vertex rankings of a 
highly structured graph, such as a small world network, with a random distribution of coloring, 
should yield rankings more similar to centrality scores. 

For this project we investigated the network in Figure 1 and one 21-vertex network of each type 
with varying coloring schemes. We also ran the algorithm for networks of 100 vertices, primarily 
to verify that the algorithm could support networks of that size. Once initial values for the 
baseline network were calculated, we investigated the impact on BD scores of swapping the 
colorings of specific pairs of vertices in the same structure to investigate how that impacted the 
rankings (Figure 4). Similarly, we experimented with removing or adding edges to investigate 
how small structural changes impact rankings. The BD metric, as expected produced rankings 
similar to those of the Shapley Value when networks were either very dense or random. For 
highly structured small world and scale free networks, the BD metric produced rankings similar 
to centrality, especially when colors were randomly and evenly distributed. 

Table 2 includes the BD values for the original illustrative network for three alternative 
colorings, demonstrating how the distribution of colors within the structure alter the power 
hierarchy. 
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Conclusion  

Identifying Key Actors in Heterogeneous Networks (W911NF-17-0009), a six month Short-Term 
Innovative Research project concluding on August 31, 2017, produced an entirely unique 
approach to rank actor influence in a network where structure and role are both factors. The final 
product includes an easy to use and interpret algorithm for ranking vertex “value.” Our initial 
analysis using this method to evaluate simulated data revealed that the metric behaved as 

Figure 4. Alternative colorings for identical structures reveal the impact of minor 
modifications in structure to the BD metric. The addition of vertices or edges reveal 
how small structural perturbations impact BD rankings (Graph B). 

Table 2 



17 

predicted: when structure was absent, the method produced rankings similar to the game-
theoretic solutions and when structure was present, the method produced rankings similar to 
network metrics.  
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